Control of separated flows with the ionic wind generated by a DC corona discharge
نویسندگان
چکیده
This paper describes the investigation of a DC surface corona discharge established on a rounded edge of a dielectric material. The ionic wind induced by the discharge was measured with the Particle Image Velocimetry system. A physical induced flow model is proposed to interpret the shape of the velocity field. Experiments on a flat plate and a NACA 0015 were performed in a subsonic wind tunnel. They showed that the flow induced by this discharge acted close to the wall and modified the fully detached flow on the airfoil up to Re = 267 000 and 17.5◦ by a combined effect of the discharge and a Reynolds effect.
منابع مشابه
A DC corona discharge on a flat plate to induce air movement
This paper describes a DC surface corona discharge designed to modify the airflow around a flat plate. The electrode configuration consisted of two thin copper layers placed on each side of the plate’s attack edge. Discharge optical measurements with a photomultiplier tube indicated that the light emitted by the plasma is pulsating, at a frequency that increases with applied voltage. Moreover, ...
متن کاملApplication of the airflow control by electro-hydrodynamic actuator
The technique used to control the airflow is based on the electro-hydrodynamic actuator which is also called plasma actuator. This actuator ensures the airflow control thanks to the electric wind created by the electrical corona discharge. This ionic wind is developed at the profile surface tangential to the initial free airflow so that it has a significant effect on the boundary layer flow. Th...
متن کاملElectric winds driven by time oscillating corona discharges
We investigate the formation of steady gas flows—so-called electric winds—created by point-plane corona discharges driven by time oscillating (ac) electric fields. By varying the magnitude and frequency of the applied field, we identify two distinct scaling regimes: (i) a low frequency (dc) regime and (ii) a high frequency (ac) regime. These experimental observations are reproduced and explaine...
متن کاملImpingement Cooling Using the Ionic Wind Generated by a Low-Voltage Piezoelectric Transformer
As the consumer demand for smaller, more sophisticated computers grows, the need arises for new air cooling methods that will work in geometries that mechanical fans cannot. Ionic winds (also known as electrohydrodynamic flows) are flows that are produced by the generation of a gas discharge. These flows do not require moving parts to operate, making them attractive for small form-factor device...
متن کاملAn Experimental Study of the Effect of High Electric Field on Mass Transfer Enhancement
Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using a very small amount of energy. The enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode charged with positive high DC voltage impinges on water surface an...
متن کامل